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1

Modeling

This chapter describes how you can
use SimBiology to model biological
processes. It begins with the familiar
concepts of mass action and enzyme
kinetics.

Mass Action Kinetics (p. 1-2) Elementary reactions explained by
elementary mass action kinetics

Enzyme Kinetics (p. 1-8) Enzyme-catalyzed reactions
explained by mass action and
Michaelis-Menten kinetics

Constant Amounts and Boundary
Conditions (p. 1-14)

Species properties that determine
how species amounts are handled
during a simulation

Algebraic Rules (p. 1-19) Model components that change a
parameter value or a species amount

Rate Rules (p. 1-21) Model components that define the
rate of change for a parameter value
or species amount without using a
reaction



1 Modeling

Mass Action Kinetics
Mass action describes the behavior of reactants and products in an elementary
chemical reaction. Mass action kinetics describes this behavior as an equation
where the velocity or rate of a chemical reaction is directly proportional to
the concentration of the reactants.

Zero-Order Reactions (p. 1-3) Reaction rate does not depend on the
concentration of the reactants

First-Order Reactions (p. 1-4) Reaction rate is proportional to the
concentration of a single reactant.

Second-Order Reactions (p. 1-5) Reaction rate is proportional to the
concentration of two reactants or the
square of a single reactant

Reversible Mass Action (p. 1-7) Total reaction rate is the difference
between the forward and reverse
reaction rates.
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Mass Action Kinetics

Zero-Order Reactions
With a zero order reaction, the reaction rate does not depend on the
concentration of reactants. Examples of zero-order reactions are synthesis
from a null species, and modeling a source species that is added to the system
at a specified rate.

reaction: null -> P
reaction rate: k mole/(liter*second)

species: R = 10 mole
P = 0 mole

parameters: k = 1 mole/(liter*second)

Entering the reaction above into SimBiology and simulating produces the
following result:

Zero-Order Mass Action Kinetics

Note If the amount of a reactant with zero-order kinetics reaches zero before
the end of a simulation, then the amount of reactant can go below zero
regardless of the solver or tolerances you set.
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1 Modeling

First-Order Reactions
With a first-order reaction, the reaction rate is proportional to the
concentration of a single reactant. An example of a first-order reaction is
radioactive decay.

reaction: R -> P
reaction rate: k*R mole/(liter*second)

species: R = 10 mole/liter
P = 0 mole/liter

parameters: k = 1 1/second

Entering the reaction above into SimBiology and simulating produces the
following results:

First-Order Mass Action Kinetics
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Mass Action Kinetics

Second-Order Reactions
A second-order reaction has a reaction rate that is proportional to the square
or the concentration of a single reactant or proportional to two reactants.
Notice the space between the reactant coefficient and the name of the
reactant. Without the space, 2R would be considered the name of a species.

reaction: 2 R -> P
reaction rate: k*R^2 mole/(liter*second)

species: R = 10 mole/liter
P = 0 mole/liter

parameters: k = 1 liter/(mole*second)

Entering the reaction above into SimBiology and simulating produces the
following results:

Second-Order Kinetics with Single Reactant

With two reactants, the reaction rate depends on the concentration of two
of the reactants.

reaction: R1 + R2 -> P
reaction rate: k*R1*R2 mole/(liter*second)

1-5



1 Modeling

species: R1 = 10 mole/liter
R2 = 8 mole/liter
P = 0 mole/liter

parameters: k = 1 liter/(mole*second)

Enter the reaction above into SimBiology and simulating produces the
following results. There is a difference in the final values because the initial
amount of one of the reactants is lower than the other. After the first reactant
is used up, the reaction stops.

Second-Order Kinetics with Two Reactants
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Mass Action Kinetics

Reversible Mass Action
You can model reversible reactions with two separate reactions or with one
reaction. With a single reversible reaction, the reaction rates for the forward
and reverse reactions are combined into one expression. Notice the angle
brackets before and after the hyphen to represent a reversible reaction.

reaction: R <-> P
reaction rate: kf*R - kr*P mole/(liter*second)

species: R = 10 mole/liter
P = 0 mole/liter

parameters: kf = 1 1/second
kr = 0.2 1/second

Entering the reaction above into SimBiology and simulating produces the
following results. At equilibrium when the rate of the forward reaction equals
the revers reaction, v = kf*R - kr*P = 0 and P/R = kf/kr.
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1 Modeling

Enzyme Kinetics
Enzymes can increase the rate of a reaction by using a reaction mechanism
or pathway with a lower activation energy. This section describes a common
single substrate enzyme model using a mass action mechanism or rate
equations derived from mass action mechanisms.

Simple Model for Single Substrate
Catalyzed Reactions (p. 1-8)

Model for a single substrate reaction
catalyzed irreversibly by an enzyme

Enzyme Reactions with Differential
Rate Equations (p. 1-9)

Model reactions with differential
rate equations derived from the
reactions and reaction rates

Enzyme Reactions with Mass Action
Kinetics (p. 1-11)

Model reactions directly with their
reaction rate equations

Enzyme Reactions with Irreversible
Henri-Michaelis-Menten Kinetics
(p. 1-12)

Model a mass action mechanism
with a derived kinetic equation

Simple Model for Single Substrate Catalyzed
Reactions
A simple model for enzyme-catalyzed reactions starts a substrate S reversibly
binding with an enzyme E. Some of the substrate in the substrate/enzyme
complex is converted to product P with the release of the enzyme.

S + E  ES  E + P
k1

k1r

k2⎯ →⎯⎯← ⎯⎯⎯ ⎯ →⎯⎯

v  = k [S][E],   v  = k [ES],   v  = k [ES]1 1 1r 1r 2 2

This simple model can be defined with:

• Differential rate equations, see “Enzyme Reactions with Differential Rate
Equations” on page 1-9.

• Reactions with mass action kinetics, see “Enzyme Reactions with Mass
Action Kinetics” on page 1-11.
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Enzyme Kinetics

• Reactions with Henri-Michaelis-Menten kinetics, see “Enzyme Reactions
with Irreversible Henri-Michaelis-Menten Kinetics” on page 1-12.

Enzyme Reactions with Differential Rate Equations
The reactions for a single-substrate enzyme reaction mechanism (see “Simple
Model for Single Substrate Catalyzed Reactions” on page 1-8) can be described
with differential rate equations. You can enter the differential rate equations
into SimBiology as rate rules.

reactions: none
reaction rate: none

rate rules: dS/dt = k1r*ES - k1*S*E
dE/dt = k1r*ES + k2*ES - k1*S*E
dES/dt = k1*S*E - k1r*ES - k2*ES
dP/dt = k2*ES

species: S = 8 mole
E = 4 mole

ES = 0 mole
P = 0 mole

parameters: k1 = 2 1/(mole*second)
k2r = 1 1/second
k2 = 1.5 1/second

Remember to enter rate rules using the form dS/dt = f(x) as S = f(x).
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1 Modeling

Alternatively, you could remove the rate rule for ES, add a new species Et for
the total amount of enzyme, and add an algebraic rule 0 = Etotal - E - ES,
where the initial amounts for Etotal and E are equal.

reactions: none
reaction rate: none

rate rules: dS/dt = k1r*ES - k1*S*E
dE/dt = k1r*ES + k2*ES - k1*S*E
dP/dt = k2*ES

albebric rule: 0 = Et - E - ES
species: S = 8 mole

E = 4 mole
ES = 0 mole
P = 0 mole

Et = 4 mole
parameters: k1 = 2 1/(mole*second)

k1r = 1 1/second
k2 = 1.5 1/second
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Enzyme Kinetics

Enzyme Reactions with Mass Action Kinetics
Determining the differential rate equations for the reactions in a model
is a time-consuming process. A better way is to enter the reactions for a
single substrate enzyme reaction mechanism directly into SimBiology. The
following example using models an enzyme catalyzed reaction with mass
action kinetics. For a description of the reaction model, see “Simple Model for
Single Substrate Catalyzed Reactions” on page 1-8.

reaction: S + E -> ES
reaction rate: k1*S*E (binding)

reaction: ES -> S + E
reaction rate: k1r*ES (unbinding)

reaction: ES -> E + P
reaction rate: k2*ES (transformation)

species: S = 8 mole
E = 4 mole

ES = 0 mole
P = 0 mole

parameters: k1 = 2 1/(mole*second)
k1r = 1 1/second
k2 = 1.5 1/second

The results for a simulation using reactions are identical to the results from
using differential rate equations.
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1 Modeling

Enzyme Reactions with Irreversible
Henri-Michaelis-Menten Kinetics
Representing an enzyme-catalyzed reaction with mass action kinetics
requires you to know the rate constants k1, k1r, and k2. However, these rate
constants are rarely reported in the literature. It is more common to give
the rate constants for Henri-Michaelis-Menten kinetics with the maximum
velocity Vm=k2*E and the constant Km = (k1r + k2)/k1. The reaction rate for
a single substrate enzyme reaction using Henri-Michaelis-Menten kinetics is
given below. For information about the model, see “Simple Model for Single
Substrate Catalyzed Reactions” on page 1-8.

v = 
Vmax[S]
Km + [S]

The following example models an enzyme catalyzed reaction using
Henri-Michaelis-Menten kinetics with a single reaction and reaction rate
equation. Enter the reaction defined below into SimBiology and simulate.

reaction: S -> P
reaction rate: Vmax*S/(Km + S)
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Enzyme Kinetics

species: S = 8 mole
P = 0 mole

parameters: Vmax = 6 mole/second
Km = 1.25 mole

The results show a plot slightly different from the plot using mass action
kinetics. The differences are due to assumptions made when deriving the
Michaelis-Menten rate equation.
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1 Modeling

Constant Amounts and Boundary Conditions
SimBiology has two properties (constant amount, boundary condition) to
specify how the amount of a species changes or does not change during a
simulation

Definition of Constant and Boundary
Properties (p. 1-14)

Definitions

Constant = NO, Boundary = NO
(p. 1-15)

Species modeled in a reaction or a
rule, but not both.

Constant = YES, Boundary = NO
(p. 1-15)

Constant species that are neither
modeled in a reaction or varied by a
rule.

Constant = NO, Boundary = YES
(p. 1-16)

Species in a reaction, but changed
only by a rule

Constant = YES, Boundary = YES
(p. 1-17)

Constant species in reactions that
adds mass (sources) or removes mass
(sinks)

Model Edges (p. 1-18) Interface between biological system
(model) and the environment

Definition of Constant and Boundary Properties
The SBML specification (Level 2, Version 1) added the property
BoundaryCondition to the model definition.

Species with BoundaryCondition = Yes — The species amount is either
constant or determined by a rule, but in either case the amount is not
determined by a chemical reaction. In other words, the simulation does not
create a differential rate term from the reactions for this species even if it is
in a reaction, but it can have a differential rate term created from a rule.

Species with ConstantAmount = No — The species amount is determined
by a reaction or a rule, but not both.
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Constant Amounts and Boundary Conditions

Species with ConstantAmount = Yes — The species amount does not
change during a simulation. The species can be in a reaction or rule, but it
cannot have a rule that changes its amount.

Constant = NO, Boundary = NO
The value of a species can change, and it can change with either a reaction
or rule, but not both.

Constant Boundary Reaction Rule Changed By

NO NO YES NO Reaction

NO NO NO YES Rule

Example — Species A is in a reaction, and it is in the reaction rate equation.
The species amount or concentration is determined by the reaction. This is
the most common category of a species. A differential rate equation for the
species is created from the reactions.

reaction: A -> B
reaction rate: k*A

Example — Species E is not in the reaction, but it is in the reaction rate
equation. E varies with another reaction or rule.

reaction: S -> P
reaction rate: kcat*E*S/(Km + S)

Example — Species G is not in a reaction, and it is not in a rate equation. G
varies with an algebraic rule or rate rule.

rate rule: dG/dt = k

Constant = YES, Boundary = NO
The value of a species cannot change. When a species has its ConstantValue
selected and BoundaryCondition not selected, it acts like a parameter. It
cannot be in a reaction and it cannot be varied by a rule.
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1 Modeling

Constant Boundary Reaction Rule Changed By

YES NO NO NO Never

Example — Species E is not in the reaction, but it is in the reaction rate
equation. E is constant and could be replaced with the constant Vm = k2*E.

reaction: S -> P
reaction rate: kcat*E*S/(Km + S)

Constant = NO, Boundary = YES
The value of a species can change, and it is in a reaction, but a differential
rate term from the reaction is not created. The value of the species change
with a rule and a differential rate term is created from the rule.

Constant Boundary Reaction Rule Changed By

NO YES YES YES Rule

From the SMBL specification (Level 2, Version 1), “By default, when a
species is a product or reactant of one or more reactions, its concentration is
determined by those reactions. In SBML, it is possible to indicate that a
given species’ concentration is not determined by the set of reactions even
when that species occurs as a product or reactant; i.e., the species is on the
boundary of the reaction system but is a component of the rest of the model.”

Example — Species A is not changed by the rate equation, but changes
according to a rate rule. However, A could be in the rate equation that
changes other species in the reaction.

reaction: A -> B
reaction rate: k1 or k1*A

rate rule: dA/dt = k2*A (solution is A = k2*t)
(enter in SimBiology as A = k2*A)

Example — Species A is not in the rate equation, but changes according to
an algebraic rule.

reaction: A -> B + C
reaction rate: k or k*A
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Constant Amounts and Boundary Conditions

algebraic rule: A = 2*C
(enter in SimBiology as 2*C - A)

Constant = YES, Boundary = YES
The value of the species can change. It is in a reaction, but a differential rate
term is not created from the reaction. The differential rate term is created
from a rule.

Constant Boundary Reaction Rule Changed By

YES YES YES NO Never

During simulation, a differential rate equation is not created for the species.
dSpecies/dt does not exist.

Example — A is a infinite source and its amount does not change. B
increases with a zero order rate (k and k*A are both constants). A source
refers to a species where mass is added to the system.

reaction: A -> B
reaction rate: k or k*A

Example — B decreases with a first-order rate, but A is an infinite sink
and its amount does not change. A sink refers to a species where mass is
subtracted from the system.

reaction: B -> A
reaction rate: k*B

Example — The null species in SimBiology is a reserved species name that
can act as a source or a sink.

reaction: null -> B
reaction rate: k

reaction: B -> null
reaction rate: k*B

Example — ATP and ADP are in the reaction and have constant values, but
they are not in the reaction rate equation.

1-17



1 Modeling

reaction: S + ATP -> P + ADP
reaction rate: Vm*S/(Km + S)

Model Edges
As you build complex models from simpler pathways, there are edges in the
model that you need to define before simulating the model. Knowing where
the model edges are located is important because a species that is initially
constant or unregulated can later vary as you add details to your model. The
concept of a model edge overlaps with SBML boundaries, but not always.

Model edge — Species with constant amounts that might or might not be
modeled in the reaction and reaction rate equations. Examples are cofactors,
NAD+, ATP, and DNA.

Model edge — Enzymes with constant amounts that are not regulated. For
example, a Michaelis-Menten rate equation with Vmax specified as a parameter
assumes that the amount of enzyme catalyzing the reaction remains constant.

v
V [Substrate]
K + [Substrate]

max*

m 
=

You may want to temporarily model a regulated enzyme in a rate equation. If
the amount of enzyme is constant, then this species is a model edge. After
adding the reaction(s) that change the amount of the enzyme,

v
k*[ ]*[Substrate]

K + [Substrate]m 
= Enzyme

Model edge — Null or source species that synthesizes another species at a
constant rate (zero order reaction). Mass is added to the system.

Model edge — degradation of a species to a null or sink species (first-order
reaction). Mass is taken away from the system.
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Algebraic Rules

Algebraic Rules
An algebraic rule is a model component that defines the value for a
nonconstant parameter or the amount of a species that is determined through
a algebraic equation instead of a differential relationship.

What Is an Algebraic Rule? (p. 1-19) Define changes in species amounts
and parameters values without
using a reaction.

Mass Balance Equations (p. 1-19) Use mass balance equations with
reactions to define species amounts.

What Is an Algebraic Rule?
An algebraic rule is an equation that defines the value of a variable that you
may not be able to define with a reaction. Use algebraic rules for defining
equity constraints that are not rates of change.

There are two types of rules that are evaluated at each time step during a
simulation. The first is a rate rule (see “Rate Rules” on page 1-21) while the
second is an algebraic rule. An algebraic rule is defined by the equation

0 = f(W) - x

The variable x can be a species amount or parameter value. The function
f(W) is an expression that can include other species and parameters. In
SimBiology, you enter an algebraic rule using the form

f(W) - x

Mass Balance Equations
There are some models in the literature that are defined with differential rate
equations and algebraic mass balance equations.

A mass balance equation can define the amount of a species and reduce the
number of differential rate equations that need to be solved. For example, a
common signal transduction pathway can include a reaction Ei -> Ea where
an enzyme transforms from an active form to an inactive form and back. The
amount of inactive enzyme Ei is defined by the differential rate equation
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1 Modeling

dEi/dt = Vm*Ei/Km + Ei. If the total amount of the enzyme is known or
remains constant, the total amount of enzyme Ea can be defined with the
algebraic equation Ea = Et - Ei instead of a differential equation.

With SimBiology, models are defined by reactions, and the corresponding
differential rate equations are calculated for all species. Adding a mass
balance equation as an algebraic rule, and setting Et to be constant, would
overdefine the model and cause a simulation error (the number of equations
cannot be greater then the number of independent variables). If want to use
a mass balance equation, you have to let Et vary, then Et is an independent
variable that is not defined by a reaction and the simulation works.
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Rate Rules

Rate Rules
A rule is an model component that defines the value for a parameter or the
amount of a species. Use algebraic rules for equations that are not rates of
change. Use rate rules for equations that determine the rate of change for a
parameter value or species amount.

What Is a Rate Rule? (p. 1-21) Define the rate of change for a
species amount or parameter value.

Rate of Change Is Constant (p. 1-22) Rate of change does not depend on
the changing amount of a species

Rate of Change Is Exponential
(p. 1-23)

Rate of change depends on the
changing amount of the species

Rate of Change Is Determined by
Another Species (p. 1-24)

Rate of changed depends on the
changing amount of another species

Differential Rate Equations as Rules
(p. 1-25)

Rate of change is defined with a
differential rate equation derived
from the reactions

What Is a Rate Rule?
A rule is an equation that defines the value for a variable. For species, use
rate rules as an alternative to the differential rate expression generated from
reactions.

There are two types of rules that are evaluated at each time step during a
simulation. The first is an algebraic rule (see “Algebraic Rules” on page 1-19)
while the second is a rate rule. A rate rule is defined by the equation

dx/dt = f(W)

The variable x can be a species amount, parameter value, or compartment
dimension (volume or area). The function f(W) is an expression that can
include other species and parameters. In SimBiology, you enter a rate rule
using the form

x = f(W)
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1 Modeling

Rate of Change Is Constant
You can increase or decrease the amount or concentration of a species by a
constant value using a zero order rule. For example, the species c increases
by a constant rate k. You could also include species and parameters that have
their ConstantAmount or ConstantValue properties selected.

reaction: none
rate equation: none

rate rule: dc/dt = k
species: c = 0 mole

parameters: k = 1 mole/second

The solution is c = kt+co where co is the initial amount or concentration
of the species c.

Enter the rule described above as c = k. From the RuleType list, select
rate, enter the values for c and k, and then simulate.

Alternatively, you could model a constant increase in a species with the
reaction null -> C.
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Rate Rules

Rate of Change Is Exponential
You can change the amount of a species similar to a first-order reaction using
a first-order rate rule. For example, the species c decays exponentially. You
could also include a parameter with its ConstantValue property deselected.

reaction: none
rate equation: none

rate rule: dc/dt = -k*c
species: c = 10 mole

parameters: k = 1 1/second

The solution for the rate rule dc/dt = -k*c is c = c eo
-kt.

Enter the rate rule described above and simulate with an ODE solver.

Notice that if the amount of a species c is determined by a rate rule and c is
also in a reaction, c must have its property for BoundaryCondition selected.
For example, with a reaction a -> c and a rate rule dc/dt = k*c, select the
BoundaryCondtion for c so that a differential rate term is not created from
the reaction. The amount of c is determined solely by a differential rate term
from the rate rule.
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If the boundary condition is not selected, you will get the following error
message:

Invalid rule variable 'in a reaction or another rule'.

Rate of Change Is Determined by Another Species
A species from one reaction can determine the rate of another reaction if it
is in the second reaction rate equation. In a similar way, a species from a
reaction can determine the rate of another species if it is in the rate rule
that defines that other species.

reaction: a -> b
rate equation: v = -k1*a

rate rule: dc/dt = k2*a
species: a = 10 mole

b = 0 mole
c = 5 mole

parameters: k1 = 1 1/second
k2 = 1 1/second

The solution for the species in the reaction are

a=a eo
-k1t and b=a (1-e )o

-k1t

With the rate rule dc/dt = k2*a dependent on the reaction, dc/dt =
k2(aoe

-k1t), and the solution is

c = co + k2ao/k1(1 - e-k
1

t)

Enter the reaction and rule described above and simulate.
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Differential Rate Equations as Rules
Many mathematical models in the literature are described with differential
rate equations for the species. You could manually convert the equations to
reactions, or you could enter the equations as rate rules. For example, you
could enter the following differential rate equation for a species C,

dC
dt

 = v  - v X
C

K  + C
 - k Ci d

c
d

as a rate rule in SimBiology:

C = vi - (vd*X*C)/(Kc + C) - kd*C
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Simulation

Simulation Overview (p. 2-2) Description of stiff and nonstiff
models. Procedure for selecting a
solver for your simulation.

Nonstiff Deterministic Solvers
(p. 2-5)

Models with either all fast or all slow
changing variables.

Stiff Deterministic Solvers (p. 2-6) Models with fast and slow changing
variables.

Stochastic Solvers (p. 2-7) Models with a small number of
molecules.



2 Simulation

Simulation Overview
How do solvers work (p. 2-2) How the solver functions compute

model outputs.

Stiff Versus Nonstiff Models (p. 2-2) Many biological models include
species amounts that are changing
quickly and others that change
slowly — they are numerically stiff.
This is important for selecting a
solver.

Selecting a Solver (p. 2-3) A guide to solver choice depending on
problem type and trade-offs between
speed and accuracy.

How do solvers work
In order to simulate a model, the model is converted to a set of differential
equations. The solver functions are used to compute solutions for those
equations at different time intervals, giving the model’s states and outputs
over a span of time. You can then plot these outputs from your simulation.

The MATLAB ODE solvers are designed to handle ordinary differential
equations. An ordinary differential equation contains one or more derivatives
of a dependent variable y with respect to a single independent variable t,
usually referred to as time.

The solver functions implement numerical integration methods for solving
initial value problems for ordinary differential equations (ODEs). Beginning
at the initial time with initial conditions, they step through the time interval,
computing a solution at each time step. If the solution for a time step satisfies
the solver’s error tolerance criteria, it is a successful step. Otherwise, it is a
failed attempt; the solver shrinks the step size and tries again.

Stiff Versus Nonstiff Models
An ordinary differential equation problem is stiff if the solution being sought
is varying slowly, but there are nearby solutions that vary rapidly, so the
numerical method must take small steps to obtain satisfactory results. The
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ODE solvers in MATLAB whose name ends in "s" are for "stiff" problems.
Many biological models are numerically stiff because they include species
amounts that are changing quickly and others that change slowly.

Stiffness is an efficiency issue. If you don’t care how much time a computation
takes, you need not be concerned about stiffness. Nonstiff methods can solve
stiff problems; they just take a long time to do it.

As an illustration, imagine trying to find the quickest descent through a
canyon. An explicit algorithm, which is normally used for nonstiff models,
would sample the local gradient to find the descent direction. But following
the gradient on either side of the trail will send you bouncing back and forth
from wall to wall — the descent will be found but it will take a long time. An
implicit algorithm used for stiff models can anticipate where each step is
taking you, keep you on the trail with fewer steps, and so save time. Using a
stiff solver for a stiff problem can save thousands of solver steps and function
evaluations compared to a non-stiff solver.

Methods intended to solve stiff problems efficiently do more work per step,
but can take much bigger steps. Stiff methods are implicit. At each step they
use MATLAB matrix operations to solve a system of simultaneous linear
equations that helps predict the evolution of the solution.

Not all difficult problems are stiff, but all stiff problems are difficult for
solvers not specifically designed for them. Solvers for stiff problems can be
used exactly like the other solvers.

For an illustrative code example you can run to plot the effects of numerical
stiffness on different solvers, see MATLAB News & Notes - May 2003 Cleve’s
Corner: Stiff Differential Equations..

Selecting a Solver
Choice of solver depends on the problem and time available for computation.
There are trade-offs to be made between speed and accuracy. In general,
ode45 is the best function to apply as a "first try" for most problems, or ode15s
if you suspect that a problem is stiff. As you find out more about the problem
you can try other solvers. Experimentation is generally required to determine
the best solver for a particular model. As a general guide:
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1 Models with either all fast or all slow changing variables are nonstiff
problems:

Use “Nonstiff Deterministic Solvers” on page 2-5

• ode45 — best first guess

• ode23 — may be more efficient than ode45 with crude tolerances and
mild stiffness

• ode113 — may be more efficient than ode45 with stringent tolerances

• ode15i — for fully implicit differential equations

2 Models with both fast and slow changing variables are stiff problems:

Use “Stiff Deterministic Solvers” on page 2-6

• ode15s — try first if you suspect that a problem is stiff, or if ode45 failed
or was very inefficient

• ode23s — may be more efficient than ode15s at crude tolerances, and can
solve some stiff problems that ode15s cannot

• ode23t — use this solver if the problem is only moderately stiff and you
need a solution without numerical damping

• ode23tb — Like ode23s, this solver may be more efficient than ode15s
at crude tolerances

3 Models with a small number of molecules:

Use “Stochastic Solvers” on page 2-7

• Stochastic — Most accurate, may be too slow if the initial number of
molecules for a reactant species is large.

• Explicit Tau — speeds up the simulation at the cost of some accuracy;
can be orders of magnitude faster than Stochastic. Can be used for large
problems (provided the problem is not numerically stiff.)

• Implicit Tau — May be the fastest, at the cost of some accuracy. Can be
used for large problems and also for numerically stiff problems. For
non-stiff systems may not be a good choice because it adds computational
overhead.
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Nonstiff Deterministic Solvers
Models with either all fast or all slow changing variables may not be
numerically stiff. Nonstiff Deterministic Solvers are appropriate to try.

ode45 (Dormand-Prince) (p. 2-5)

ode23 (Bogacki-Shampine) (p. 2-5)

ode113 (Adams) (p. 2-5)

ode45 (Dormand-Prince)
Based on an explicit Runge-Kutta (4,5) formula, the Dormand-Prince pair.

It is a one-step solver - in computing y(t )n . It needs only the solution at

the immediately preceding time point y(t )n-1 . In general, ode45 is the best
function to apply as a "first try" for most problems.

ode23 (Bogacki-Shampine)
Based on an explicit Runge-Kutta (2,3) pair of Bogacki and Shampine. It may
be more efficient than ode45 at crude tolerances and in the presence of mild
stiffness. Like ode45, ode23 is a one-step solver

ode113 (Adams)
Variable order Adams-Bashforth-Moulton PECE solver. It may be more
efficient than ode45 at stringent tolerances and when the ODE function is
particularly expensive to evaluate. ode113 is a multistep solver - it normally
needs the solutions at several preceding time points to compute the current
solution.
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Stiff Deterministic Solvers
Models with fast and slow changing variables are numerically stiff. Stiff
Deterministic Solvers are the best choice.

ode15s (stiff/NDF) (p. 2-6)

ode23s (stiff/Mod. Rosenbrock)
(p. 2-6)

ode23t (Mode. stiff/Trapezoidal)
(p. 2-6)

ode23tb (stiff/TR-BDF2) (p. 2-6)

ode15s (stiff/NDF)
Variable-order solver based on the numerical differentiation formulas (NDFs).
Optionally it uses the backward differentiation formulas, BDFs, (also known
as Gear’s method). Like ode113, ode15s is a multistep solver. If you suspect
that a problem is stiff or if ode45 failed or was very inefficient, try ode15s.

ode23s (stiff/Mod. Rosenbrock)
Based on a modified Rosenbrock formula of order 2. Because it is a one-step
solver, it may be more efficient than ode15s at crude tolerances. It can solve
some kinds of stiff problems for which ode15s is not effective.

ode23t (Mode. stiff/Trapezoidal)
An implementation of the trapezoidal rule using a "free" interpolant. Use this
solver if the problem is only moderately stiff and you need a solution without
numerical damping.

ode23tb (stiff/TR-BDF2)
An implementation of TR-BDF2, an implicit Runge-Kutta formula with a first
stage that is a trapezoidal rule step and a second stage that is a backward
differentiation formula of order 2. Like ode23s, this solver may be more
efficient than ode15s at crude tolerances.
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Stochastic Solvers
Models with a small number of molecules can realistically be simulated
stochastically — that is, allowing the results to contain an element of
probability, unlike a deterministic solution. The stochastic simulation
algorithms provide a practical method for simulating reactions which are
stochastic systems. Expect stochastic simulations to take more computation
time than deterministic simulations.

Stochastic Simulation Algorithm
(SSA) (p. 2-7)

Explicit Tau-Leaping Algorithm
(p. 2-8)

Implicit Tau-Leaping Algorithm
(p. 2-8)

References (p. 2-9)

Stochastic Simulation Algorithm (SSA)
Using the stochastic simulation algorithm for a system is equivalent to
solving the Chemical Master Equation for the system. The Chemical Master
Equation is otherwise impossible to solve for most practical problems.
Thus, the stochastic simulation algorithm provides a practical method for
simulating stochastic systems. The algorithm simulates one reaction at a
time based on the propensity function for each reaction.

Advantages:

• This algorithm is exact

Disadvantages:

• Since it evaluates one reaction at a time, it may be too slow for large
problems

• If the number of molecules of any of the reactants is huge, it may take a
long time to complete the simulation
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Explicit Tau-Leaping Algorithm
Since the stochastic simulation algorithm may be too slow for a lot of practical
problems, this algorithm has been designed to speed up the simulation at
the cost of some accuracy. The algorithm treats each reaction channel as
being independent of the others. It automatically chooses a time interval such
that the relative change in the propensity function for each reaction is less
than the user specified error tolerance. After selecting the time interval, the
algorithm computes the number of times each reaction channel fires during
the time interval and makes the appropriate changes to the concentration of
various chemical species involved.

Advantages:

• This algorithm can be orders of magnitude faster than the SSA

• It can be used for large problems (provided the problem is not numerically
stiff.)

Disadvantages:

• Some accuracy is sacrificed for speed.

• Not good for stiff models.

• The error tolerance needs to be specified in such a manner that the
resulting time steps are of the order of the fastest time scale.

Implicit Tau-Leaping Algorithm
Like the explicit tau-leaping algorithm, the implicit tau-leaping algorithm
is also an approximate method of simulation designed to speed-up the
simulation at the cost of some accuracy. It can handle numerically stiff
problems better than the explicit tau-leaping algorithm. For deterministic
systems, a problem is said to be numerically stiff if there are “fast” and “slow”
time scales present in the system and the “fast modes” are stable. For such
problems, the explicit tau-leaping method performs well only if it continues
to take small time steps that are of the order of the fastest time scale. The
implicit tau-leaping method can potentially take much larger steps and still
be stable. The algorithm treats each reaction channel as being independent
of others. It automatically chooses a time interval such that the relative
change in the propensity function for each reaction is less than the user
specified error tolerance. After selecting , the algorithm computes the number
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of times each reaction channel fires during the time interval and makes the
appropriate changes to the concentration of various chemical species involved.

Advantages

• This algorithm can be much faster than the SSA. It is also usually faster
than the explicit-tau leaping algorithm

• It can be used for large problems and also for numerically stiff problems.

• The total number of steps taken is usually less than the explicit-tau leaping
algorithm.

Disadvantages

• Some accuracy is sacrificed for speed.

• There is a higher computational burden for each step as compared to the
explicit-tau leaping algorithm. This leads to a larger CPU time per step.

• This method often damps out the perturbations off the slow manifold
leading to a reduced state variance about the mean.
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